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Compositional gravity current flows produced by the instantaneous release of a finite-
volume, heavier lock fluid in a rectangular horizontal plane channel are investigated
using large eddy simulation. The first part of the paper focuses on the evolution of
Boussinesq lock-exchange gravity currents with a large initial volume of the release
during the slumping phase in which the front of the gravity current propagates
with constant speed. High-resolution simulations are conducted for Grashof numbers√

Gr = 3 150 (LGR simulation) and
√

Gr = 126 000 (HGR simulation). The Grashof
number is defined with the channel depth h and the buoyancy velocity ub =

√
g′h (g′ is

the reduced gravity). In the HGR simulation the flow is turbulent in the regions behind
the two fronts. Compared to the LGR simulation, the interfacial billows lose their
coherence much more rapidly (over less than 2.5h behind the front), which results in
a much faster decay of the large-scale content and turbulence intensity in the trailing
regions of the flow. A slightly tilted, stably stratified interface layer develops away
from the two fronts. The concentration profiles across this layer can be approximated
by a hyperbolic tangent function. In the HGR simulation the energy budget shows
that for t > 18h/ub the flow reaches a regime in which the total dissipation rate and
the rates of change of the total potential and kinetic energies are constant in time.
The second part of the paper focuses on the study of the transition of Boussinesq
gravity currents with a small initial volume of the release to the buoyancy–inertia
self-similar phase. When the existence of the back wall is communicated to the front,
the front speed starts to decrease, and the current transitions to the buoyancy–
inertia phase. Three high-resolution simulations are performed at Grashof numbers
between

√
Gr = 3 × 104 and

√
Gr = 9 × 104. Additionally, a calculation at a much

higher Grashof number (
√

Gr =106) is performed to understand the behaviour of
a bottom-propagating current closer to the inviscid limit. The three-dimensional
simulations correctly predict a front speed decrease proportional to t−α (the time t is
measured from the release time) over the buoyancy–inertia phase, with the constant
α approaching the theoretical value of 1/3 as the current approaches the inviscid

limit. At Grashof numbers for which
√

Gr > 3 × 104, the intensity of the turbulence
in the near-wall region behind the front is large enough to induce the formation
of a region containing streaks of low and high streamwise velocities. The streaks
are present well into the buoyancy–inertia phase before the speed of the front
decays below values at which the streaks can be sustained. The formation of the
velocity streaks induces a streaky distribution of the bed friction velocity in the
region immediately behind the front. This distribution becomes finer as the Grashof
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Figure 1. Sketch of a finite-volume lock-exchange flow in a channel. (a) Lock release flow
immediately after the gate is removed with associated front velocities of the heavier (Uf ) and
lighter (Uf l) currents. (b) Gravity current after the bore has formed. The bore velocity is Ubore .
(c) Gravity current during the buoyancy–inertia phase.

number increases. For simulations in which the only difference was the value of the
Grashof number (

√
Gr = 4.7 × 104 versus

√
Gr = 106), analysis of the non-dimensional

bed friction velocity distributions shows that the capacity of the gravity current to
entrain sediment from the bed increases with the Grashof number. Past the later
stages of the transition to the buoyancy–inertia phase, the temporal variations of the
potential energy, the kinetic energy and the integral of the total dissipation rate are
logarithmic.

1. Introduction
Gravity currents are mainly horizontal flows moving under the influence of gravity

and generated by density differences within a fluid or between two fluids. Predicting
and understanding the evolution of gravity currents is of considerable interest to
many applications in engineering and geophysics (e.g. see Fannelǿp 1994; Simpson
1997). Gravity currents can be generated by the instantaneous removal of a vertical
lock gate separating two fluids at rest (figure 1a) and of different densities in a channel
(lock-exchange flow). The lock-exchange flow is dominated by two instabilities: the
predominantly two-dimensional Kelvin–Helmholtz (KH) instability at the interface
between the heavier and the lighter fluid and the three-dimensional lobe-and-cleft
instability at the front. A large number of experimental and theoretical studies
were conducted to isolate the various mechanisms that drive gravity currents in
lock-exchange flows and predict the temporal evolution of global parameters such
as the front velocity and the height of the head region. The case of low-density
differences, where the Boussinesq approximation is valid, was considered in many
studies (Simpson 1972; Britter & Simpson 1978; Simpson & Britter 1979; Huppert
& Simpson 1980; Huppert 1982; Keller & Chyou 1991; Hallworth et al. 1996; Shin,
Dalziel & Linden 2004).
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In the geometrical set-up considered in the present numerical study, the horizontal
channel is straight and has a rectangular section. A rear wall is present at one
end of the straight channel. The heavier lock fluid initially occupies the volume
between the rear wall and the lock gate (figure 1a). When the lock gate is removed
instantaneously, a bottom current containing heavier lock fluid forms. This case was
studied experimentally and analytically by, among others, Huppert & Simpson (1980),
Rottman & Simpson (1983), Choi & Garcia (1995), Hacker, Linden & Dalziel (1996)
and Shin et al. (2004). In this paper we limit our investigation to compositional
currents in which density differences are produced by a difference in a property of
the fluid (e.g. temperature or salinity), and these differences are small enough for the
Boussinesq approximation to be valid. We study only the full-depth release case in
which the initial height of the lock fluid is equal to the channel height h.

Detailed measurements of the velocity and density fields within the gravity current
are seldom available from experimental studies. Additionally, in many applications
involving turbidity currents or compositional currents propagating over loose beds,
information on the spatial and temporal distributions of the bed shear stress is
essential to determine the amount of sediment entrained and carried by the current.
Measurements of the instantaneous bed shear stress distribution are nearly impossible
to achieve experimentally. This kind of information can be used in simpler models
that try to predict the sediment entrained by the current in an integral sense and to
qualitatively understand the way the sediment is entrained. Finally, information on
the global energy balance at different stages of the evolution of the current are quite
difficult to obtain experimentally. High-resolution numerical simulations can provide
this information.

A three-dimensional numerical simulation of a Boussinesq lock-exchange flow in
a long channel was reported by Härtel, Carlsson & Thunblom (2000a) and Härtel,
Meiburg & Necker (2000b), who performed direct numerical simulation (DNS) at a
relatively low Grashof number (

√
Gr = 3 450). The simulation successfully captured

the formation of the lobe-and-cleft instability at the front of the gravity current
and allowed a detailed investigation of the flow topology in the head region. Three-
dimensional DNSs at Grashof numbers higher than the one considered by Härtel
et al. (2000b) were reported by Cantero et al. (2007) in planar and cylindrical
configurations. Hallez & Magnaudet (2008) used DNS to investigate the role of
confinement and channel geometry on the evolution of lock-exchange gravity current
flows.

In the present work a large eddy simulation (LES) code (Pierce & Moin
2001; Chang, Constantinescu & Park 2006, 2007; Ooi, Constantinescu & Weber
2007a, 2007b) is used to perform the numerical simulations. High-resolution three-
dimensional LESs can resolve the dynamically important eddies in the flow, similar
to DNS, but are computationally much less expensive at high Grashof numbers. For
example a three-dimensional DNS at

√
Gr ∼= 105 would require an increase of the

number of mesh points by at least one order of magnitude compared to the mesh
used in a three-dimensional LES. The LES solver uses a non-dissipative method and a
dynamic Smagorinsky subgrid-scale (SGS) model to account for the effect of the un-
resolved scales. The use of a dynamic procedure (Lilly 1992) allows to estimate the
eddy viscosity and eddy diffusivity based on the flow physics (information from the
smallest resolved scales) and to reduce to a minimum the dissipation added to
the resolved scales. This means that the resolved scales can be computed accurately.
Compared to well-resolved DNS, in which all the scales up to the dissipative range are
resolved by the simulation, LES contains a certain amount of empiricism related to
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the use of an SGS model. Still, LES with a dynamic SGS model offers one of the best
alternatives for the study of the physics of high-Grashof-number gravity currents. As
two-dimensional highly resolved DNSs or LESs are in most cases about two orders
of magnitude less expensive than three-dimensional highly resolved simulations in
terms of the required computational resources, we think it is important to assess their
abilities to predict high-Grashof-number lock-exchange flows. Results in § 4.1 will
show that two-dimensional simulations are of limited use in studying high-Grashof-
number currents (

√
Gr > 104) in the later stages of their evolution. This is the reason

why in this study three-dimensional simulations are used to investigate the flow
physics of high-Grashof-number currents.

In the first part of the paper we focus on the case in which the initial aspect ratio
of the lock fluid R = h/x0 (x0 is the distance between the rear wall and the lock
gate) is much smaller than one (initial volume of release is large) and the channel
is long enough to avoid interactions of the gravity currents with the endwalls (fig-
ure 1a). We investigate the evolution of lock-release gravity currents at relatively large
Grashof numbers during the short initial acceleration phase and during the slumping
phase in which the front velocity of the current Uf can be considered constant. The
non-dimensional front velocity expressed as Froude number Frf =Uf /ub (ub =

√
g′h

is the buoyancy velocity and g′ is the reduced gravity) is dependent on the Grashof
number which is related to the ratio of buoyancy forces to viscous forces. The square
root of the Grashof number

√
Gr = ubh/ν (ν is the molecular viscosity and h is the

channel depth) plays the role of a Reynolds number. Simulations are performed at
two Grashof numbers. The set-up of the simulations (e.g. no-slip boundary condition
at the top and bottom surfaces, Schmidt number) is chosen to be identical to that
in the three-dimensional DNS study of Härtel et al. (2000b). In the first simulation,
denoted LGR (

√
Gr =3 150), the turbulence in the region behind the front is weak. In

the second simulation, denoted HGR (
√

Gr = 126 000), the flow in the region behind
the front is strongly turbulent. We consider the gravity current highly turbulent if
velocity spectra contain a clear inertial range as the upstream part to the current is
convected over streamwise locations situated at a sufficient distance from the lock
gate ( ∼= 4h in the HGR simulation).

In the second part of the paper we consider the case of gravity currents generated by
a small initial volume of release (R = O(1)) and focus on the evolution of the heavier
(forward-propagating in figure 1) current after the lighter (backward-propagating)
current forming along the top of the channel starts interacting with the rear wall. As
the lighter current starts interacting with the rear wall, it reflects and forms a bore
(figure 1b) that propagates in the same direction as the heavier current. The bore speed
Ubore is nearly constant and slightly higher than the front velocity (Uf ). Meanwhile, the
head of the heavier current propagates with practically constant depth and constant
velocity (Uf ). For sufficiently high Grashof numbers, once the bore catches the front
(figure 1c), the heavier current transitions to the buoyancy–inertia self-similar phase
in which the motion of the current is determined by a balance between the inertial and
gravitational (buoyancy) forces, and the front velocity decays with time following a
power law (Uf ∼ t−1/3). If the channel is long enough, such that viscous effects become
dominant, the current will transition to the viscous–buoyancy self-similar phase in
which the motion of the current is determined by a balance between the viscous and
gravitational forces. The flow at the front decelerates faster as Uf ∼ −4/5 (see Huppert
1982; Rottman & Simpson 1983). The buoyancy–inertia phase may not be present
if the Grashof number is sufficiently low (Rottman & Simpson 1983; Cantero et al.
2007).
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Case
√

Gr L1/h Aspect ratio, R = h/x0

A 30 980 18 0.67
B 87 750 9 1.00
CL 47 750 13.483 1.78
CH 1.0 × 106 13.483 1.78
D 530 18 1.00

Table 1. Details of finite-volume lock-exchange simulations with R = O(1).

Experiment Simulation Bore overtakes the front

Case Ref Frf Ref F rf Location, x/h Time, t/t0 l = (xf − x0)/x0

A 7000 0.45 ± 0.01 6890 (6820) 0.44 9.9 (10.4) 9.7 (10.2) 5.6 (5.9)
B 19 700 0.45 ± 0.01 19 750 (19 730) 0.45 – – –
CL 11 000 0.46 ± 0.01 10 875 (10 755) 0.45 5.5 (5.9) 11.5 (12.5) 8.8 (9.5)
CH 248 000 0.485 5.5 10.0 8.8
D 98 0.37 (10.1) (27.4) (10.1)

Table 2. Summary of simulation results with R = O(1). The values in parenthesis are from
two-dimensional simulations.

The set-up of the numerical test cases considered in the second part of the paper
was inspired by the experimental study of Hacker et al. (1996) who investigated
the effect of the initial aspect ratio of the lock fluid, R, on the evolution of lock-
exchange currents. Four three-dimensional LESs denoted A (R = 0.67), B (R = 1), CL
(R = 1.78) and CH (R = 1.78) are performed at

√
Gr = 30 980, 87 750, 47 750 and 106,

respectively (see table 1). The Grashof numbers in cases A, B and CL are in the range
in which most experimental studies are conducted (

√
Gr = 104–105). Comparison of

cases A, B and CL serves to better understand the effect of R on the transition to
the buoyancy–inertia phase. Among the well-resolved three-dimensional simulations,
case B has the highest Grashof number and is used to illustrate the structure of
the near-bed flow in the region in which the flow inside the current is strongly
turbulent. However, as the computational domain length and conditions in case B
are such that they do not allow a detailed study of the evolution of the current
during the buoyancy–inertia phase, most of the discussion focuses on case CL (see
table 2) which is used to investigate the evolution of the current after the end of
the transition to the buoyancy–inertia phase. The geometry and flow conditions in
cases CL and CH are identical except for the value of the Grashof number. Case CH
allows to better understand the physics of finite-volume lock-release currents for flow
conditions that are closer to the inviscid state that is often assumed in theoretical
models and to conditions encountered in engineering and geoscience applications.
The required computing time for a well-resolved three-dimensional DNS of case
CH would be close to three orders of magnitude larger than the one for LES.
This is well outside the reach of today’s supercomputers. Finally, a two-dimensional
simulation (case D) at a low Grashof number (

√
Gr = 530, R = 1) is performed to

study the evolution of a current that transitions directly from the slumping phase
to the viscous–buoyancy phase. This is an acceptable approximation, as, based on
experimental observations (e.g. Simpson 1997), the behaviour of low-Grashof-number
gravity currents is quasi-two-dimensional.
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The numerical method and the set-up of the numerical simulations are discussed
in § 2. The same section discusses the effect of the Schmidt number. Section 3
focuses on the evolution of lock-exchange flows with R � 1 during the slumping
phase. The effect of the Grashof number and the energy budget are analysed in
§§ 3.1 and 3.2, respectively. Section 4 focuses on the evolution of lock-exchange flows
with R = O(1). Grashof number effects on the development of flow instabilities and
current evolution are analysed in § 4.1. Section 4.2 discusses the energy budget and
the streamwise distribution of the dissipation rate. Section 4.3 analyses the temporal
variation of the front velocity. The effect of the Grashof number on the near-bed
flow structure and the bed friction velocity distributions induced by the passage of a
gravity current after the bore has formed is investigated in § 5. Section 6 presents the
main conclusions.

2. Description of numerical model and simulations
The filtered continuity and momentum equations and the advection–diffusion

equation for the concentration C̄ are made dimensionless using the channel depth,
h, and the buoyancy velocity, ub =

√
g′h, (g′ = g(C̄max − C̄min)/C̄max, where C̄max and

C̄min are the maximum and minimum initial concentrations in the domain and g is
the gravitational acceleration):

∂ui

∂xi

= 0, (1)

∂ui

∂t
+

∂(uiuk)

∂xk

= − ∂p

∂xi

+
∂

∂xk

[(
1√
Gr

+ νSGS

) (
∂ui

∂xk

+
∂uk

∂xi

)]
− Cδi2, (2)

∂C

∂t
+

∂(Cuk)

∂xk

=
∂

∂xk

((
1√

GrSc
+ αSGS

)
∂C

∂xk

)
, (3)

where p and ui are the dimensionless pressure and Cartesian velocity component in the
i direction. The dimensionless concentration is defined as C = (C̄ −C̄min)/(C̄max −C̄min)
and is linearly related to the density ρ. The coordinates in the three directions are
denoted either (x1, x2, x3) in index notation or (x, y, z). The vertical direction is y

(i = 2, in index notation). The time scale is t0 = h/ub.
The Schmidt number Sc is the ratio of the molecular viscosity ν to the molecular

diffusivity κ . The expressions used to calculate the SGS viscosity (νSGS) and SGS
diffusivity (αSGS) in (2) and (3) can be found in Pierce & Moin (2001). No assumptions
are needed of the value of the turbulent Schmidt number, as the dynamic procedure
(Germano et al. 1991) directly estimates the value of the SGS diffusivity based
on the resolved velocity and concentration fields. The need to use empirical near-
wall viscosity corrections (e.g. Van Driest damping functions) is avoided when the
dynamic procedure is used and the governing equations are integrated through
the viscous sublayer (Δn+

1
∼=1 for the first point off the wall, where n+ = nuτ/ν, uτ

is the wall friction velocity and n is the distance from the wall). The simulations
discussed in the present paper were conducted with a ratio of the test filter to the
grid filter equal to two (Pierce & Moin 2001).

The numerical solver is a finite-volume DNS/LES code (see Pierce & Moin 2001,
2004). The conservative form of the Navier–Stokes equations is integrated on non-
uniform Cartesian meshes. A semi-implicit iterative method that employs a staggered
conservative space–time discretization is used to advance the equations in time while
ensuring second-order accuracy in both space and time. A Poisson equation is solved
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Figure 2. Visualization of the lock-exchange flow in case HGR (
√

Gr = 126 000) using
spanwise-averaged concentration contours. (a) Three-dimensional simulation, Sc = 1;
(b) three-dimensional simulation, Sc = 600. The solid and dashed lines correspond to the
C = 0.9 and C = 0.1 concentration levels, respectively.

for the pressure using a multigrid algorithm. The algorithm discretely conserves energy
(Mahesh, Constantinescu & Moin 2004), which allows obtaining solutions at high
Grashof numbers in the LES regime without artificial damping. All operators are
discretized using central discretizations, except the convective term in the advection–
diffusion equation solved for the concentration, for which the QUICK scheme
(Pierce & Moin 2001) is used.

In the simulations with R � 1 the top and bottom surfaces were simulated as
no-slip smooth walls. The length of the computational domain was L1 = 24h, which
is long enough to prevent interaction of the currents with the lateral boundaries
for t < 25t0. Consequently, the velocity was assumed to be equal to zero at the two
endwall boundaries. The grid size was 2048 × 80 × 160 in the streamwise, spanwise
(domain width L3 = 1.5h) and vertical directions (L2 = h), respectively. Away from
the walls the grid spacing in the three directions was 0.01h–0.02h. To resolve the
viscous sublayer, the grid spacing in the vertical direction was reduced to 0.0005h

near the walls. A zero normal gradient was imposed for the concentration at the top,
bottom and endwall boundaries.

In most of the simulations with R � 1 we assumed a unity value for the Schmidt
number, such that a direct comparison with the results reported by Härtel et al.
(2000b) is possible. Härtel et al. (2000b), Necker et al. (2005) and Cantero et al.
(2007) found that the value of the Schmidt number does not significantly alter the
generality of the results as long as it is of order one or larger. To confirm this, two
three-dimensional simulations of the HGR case (

√
Gr = 126 000), one with Sc =1

and the other with Sc = 600, were conducted. Results showed the front speed was
identical in the two simulations, while the shape and structure of the gravity current
behind the front were similar at all stages of the evolution of the current. The sample
results in figure 2 confirm the small effect of the Schmidt number on the evolution
of high-Grashof-number currents. In part, this is because αSGS is significantly larger
than the molecular diffusivity in the regions of strong turbulence even for Sc = 1.

All three-dimensional simulations with R = O(1) were run with Sc = 600,
corresponding to saline diffusion in water. This is because one of our goals was
to compare the simulation results with the corresponding experiments of Hacker
et al. (1996) that were performed using saline water. Preliminary two-dimensional
simulations conducted with 1<Sc < 600 for case CL (R = 1.78) did not find a
significant effect of the Schmidt number on the solution. To mimic the presence
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of the free surface in the experimental set-up of Hacker et al. (1996), the top surface
of the channel was treated as a non-deformable slip boundary (zero shear stress in
the horizontal direction and zero vertical velocity) rather than as a no-slip wall as
in the simulations with R � 1. This is justified, as in all the test cases the Froude
number Uf /

√
gh was much smaller than 0.5, which indicates negligible free-surface

deformations. A convective outflow boundary condition (Pierce & Moin 2001) of the
form ∂F/∂t + Uc∂F/∂x =0 (F is a velocity component or the concentration) was
used at the right endwall. The value of the convective velocity Uc was equal to the
estimated front velocity when reaching the right endwall.

In simulations A, B, CL and CH, the Reynolds number Ref , defined with the
constant front velocity before the bore overtakes the front and the channel half-depth,
is in the range 7000–248 000 (table 2). The size of the grid was 3072(x) × 160(y) × 72(z).
The grid spacing and the degree of clustering of the mesh points in the surface-normal
direction at the bottom and endwalls were similar to the ones in the simulations with
R� 1. For case CH the stretching in the wall-normal direction was somewhat
larger, to insure Δn+ ∼=2 for the first row of points off the walls. In the two-
dimensional simulations the size of the grid was 3072(x) × 160(y). The reduction in
the computational resources needed to perform the two-dimensional simulations is of
the order of the ratio between the grid sizes in the corresponding three-dimensional
and two-dimensional simulations. In case D (

√
Gr = 530, Ref = 98) the flow is laminar

and quasi-two-dimensional. A two-dimensional simulation of case D was performed.
Similar to the investigations of Härtel et al. (2000b), Necker et al. (2005) and

Cantero et al. (2007), the flow was assumed to be periodic in the spanwise direction
in all the three-dimensional simulations. Thus, the present study considers only
gravity currents of large relative width that are particularly relevant for geoscience
applications. The effect of the sidewalls was studied by Hallez & Magnaudet (2008).
The non-dimensional concentration field was initialized with a constant value of one
in the region containing the lock fluid and a constant value of zero in the rest of the
computational domain. A random disturbance was applied to the concentration field
in the lock-gate region to accelerate the growth of three-dimensional instabilities. The
time step in the simulations was 0.001t0.

3. Gravity currents with a large volume of release (R � 1)

The main focus of this section is the study of full-depth release gravity currents
with R � 1 at Grashof numbers that are high enough to produce a strongly turbulent
flow behind the front. A main question we try to answer in this section is whether
the presence of a strongly turbulent flow behind the front induces significant changes
in the structure of the gravity current with respect to that observed for currents with√

Gr < 104 that were previously studied using three-dimensional DNS.

3.1. Role of the Grashof number

The flow in the lower-Grashof-number three-dimensional simulation at
√

Gr =3 150
is illustrated in figure 3(a) using spanwise-averaged concentration isocontours. The
flow evolution is similar to the one described by Härtel et al. (2000b). The flow is
highly three-dimensional only in the front region in which lobes and clefts develop
once the head has formed. Quasi-two-dimensional interfacial billows are generated
behind the front. The evolution of the backward- and forward-propagating currents is
very close to antisymmetrical. By contrast, in the higher-Grashof-number simulation
at

√
Gr =126 000 (e.g. see figure 3b) the break in the antisymmetry of the evolution of
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Figure 3. Visualization of the lock-exchange flow in three-dimensional simulations with R � 1
using spanwise-averaged concentration contours. (a) Case LGR (

√
Gr = 3150), t/t0 = 14.14;

(b) case HGR (
√

Gr = 126 000), t/t0 = 14.14; (c) case HGR, t/t0 = 23.33.

the forward- and backward-propagating currents is observed starting at the beginning
of the slumping phase. This is due to the more rapid growth of the original random
disturbances introduced in the lock-gate region. As the currents advance, the billows
generated behind the front start losing their predominantly two-dimensional character.
After the initial stages of the slumping phase, the billows lose their spanwise coherence
over less than 2.5h from the front, and only the first two or three billows behind
each front are easily identifiable. The interface becomes populated with small three-
dimensional eddies. These three-dimensional eddies have enough energy to strongly
distort, stretch and eventually break the interfacial billows into smaller turbulent
eddies a short time after their formation. The numerical simulation results show that
even the billows present just behind the front are strongly disturbed in the spanwise
direction. This is due, in part, to their interaction with the lobes and the clefts in the
front region.

The shedding of the KH billows introduces an important amount of energy into the
interface region, between the two fronts, in the higher-Grashof-number simulation.
This energy is redistributed once the billows lose their coherence. Wisps of heavy
or light fluid are displaced by the highly energetic three-dimensional structures that
resulted from the breaking of the billows. These structures can engulf patches of fluid
and transport them away from the interface. Then, by the action of the small-scale
eddies and dissipation, these wisps are mixed with the surrounding fluid. Once the
current head has passed a certain location, there is no source of energy towards
the large scales around that location. Eventually, the large scales present mostly at
the interface between the two fluids will be depleted of energy away from the two
fronts. As a result, a stably stratified, slightly tilted layer can be observed away from
the two fronts in the spanwise-averaged concentration contours past the initial stages
of the slumping phase (t > 18t0 for the HGR simulation at

√
Gr = 126 000). The

thickness of this layer in the central part of the channel is nearly constant. Its length
grows from about 8h at t = 19t0 to about 11h at t = 23.33t0 (figure 3c). Over this
interval, the tilting angle relative to the horizontal is about 14◦ and is slowly decaying
with time. The tilt is due to the fact that the thickness of the layer of unmixed fluid
is significantly reduced in the dissipative wake region of each current compared to
the region situated around the lock-gate position. This reduction in the thickness is
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Figure 4. Analysis of structure of the lock-exchange flow in the HGR (
√

Gr = 126 000)
simulation in the region in which the stably stratified tilted layer is present. (a) Vertical
spanwise- and time-averaged concentration profiles at sections |x/h| =0.0, 1.0 and 2.0 with
a best fit hyperbolic tangent profile (dashed line). The profiles are shifted in the vertical
direction such that C =0.5 occurs at y/h = 0.5. (b) Vertical spanwise-averaged streamwise
velocity profiles, u1/ub, at |x/h| =0.0, 1.0 and 2.0, t/t0 = 23.33.

explained by the fact that the coherence of the billows is high, and the interfacial
mixing is strongly enhanced inside the dissipative wake region.

More details on the concentration and streamwise velocity distributions within this
layer are given in figure 4. The spanwise and time-averaged concentration profiles
across the mixing layer are plotted in figure 4(a) at |x/h| =0, 1 and 2. These profiles
were time averaged between the time the mixing layer forms at a |x/h| =constant
location and the time the currents start interacting with the endwalls. The time at
which the collapse begins increases with the distance from the position of the lock gate.
For example at |x/h| =1 the profiles start collapsing for t > 20.5t0. The concentration
profile is still symmetric around C = 0.5 at sections with |x/h| > 0 but, due to the
tilting of the mixing layer, the value of y/h corresponding to C =0.5 is not equal
to 0.5 in these sections. Simulation results show that if the mean profiles at different
sections are superimposed on top of each other such that C = 0.5 occurs at the same
point (y/h= 0.5 in figure 4a), the concentration profiles collapse into one curve that
can be approximated using a hyperbolic tangent function. The vertical spanwise-
averaged profiles of the streamwise velocity, u1/ub, at sections cutting through the
mixing layer (figure 4b) are also close. Observe the presence of a region of constant
streamwise velocity starting at the edge of the boundary layers on the top and bottom
walls. The velocity variation in the central part of the channel is close to linear.

3.2. Energy budget and dissipation rate

Gravity currents are flows driven by the conversion of potential energy into kinetic
energy, with a small part of the energy being dissipated by viscous friction. The local
dissipation rate εr integrated over the computational domain Ω at a certain moment
in time is denoted ε. For LESs, in which the model can directly calculate only the
gradients in the resolved velocity field, the total dissipation rate has two components.
One is the viscous dissipation ε0, and the other is the SGS dissipation εt , due to
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velocity gradients at the unresolved scales:

ε =

L1∫ L2∫ L3∫
εr (x1, x2, x3, t)dV =

∫
Ω

εrdV = ε0 + εt ,

ε0 =

∫
Ω

ui

∂

∂xk

[(
1√
Gr

) (
∂ui

∂xk

+
∂uk

∂xi

)]
dV ,

εt =

∫
Ω

ui

∂

∂xk

[
(νSGS)

(
∂ui

∂xk

+
∂uk

∂xi

)]
dV .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

The total potential energy over the flow domain is

Ep(t) =

∫
Ω

Cx2dV . (5)

The total kinetic energy over the flow domain is

Ek(t) =

∫
Ω

0.5uiuidV . (6)

Following Necker et al. (2005), in the case of compositional currents a differential
equation relating the rates of change of the potential and kinetic energies can be
obtained if the velocity components are assumed to be equal to zero on all the
non-periodic boundaries and if the effects of diffusion in the transport equation for
the concentration are neglected. The equation is

dEk

dt
= −dEp

dt
− ε. (7)

Integrating (7) with respect to time gives an integral balance equation for the energy:

Ek + Ep + Ed = constant = Ep0, (8)

where Ep0 is the total initial potential energy. The term Ed represents the time integral
of ε:

Ed(t) =

t∫
0

ε(τ ) dτ. (9)

The temporal evolution of the terms in (7) is plotted in figure 5. After the initial
acceleration phase, dEk/dt decays in a non-monotonic fashion in both simulations.
In the lower-Grashof-number simulation, εt is practically negligible over the entire
simulated period. In the higher-Grashof-number simulation, the magnitudes of ε and
εt peak around t = 10.5t0 (xf /h ∼= 5). At this stage, the ratio εt/ε attains its maximum
value at 0.67.

For t > 18t0, dEp/dt, dEk/dt , the total dissipation rate ε and its SGS component
εt become nearly constant in the higher-Grashof-number simulation. During this
equilibrium regime, the ratio of ε to dEp/dt is close to 0.28, and that of dEp/dt to
−dEk/dt is 0.72. About 73 % of the total dissipation rate occurs over a distance of 5h
behind the two fronts (see the discussion of figure 6). Over this region, high values of
the local dissipation rate are observed in the mixing layer behind the front, where the
billows loose their coherence, and, to a smaller degree, in the near-bed region. Such
a regime is expected to be present for currents with

√
Gr > 30 000, provided the lock
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length is sufficient, such that the current will not interact with the endwalls well after
t = 18t0. The non-dimensional time needed for this regime to be reached is expected
to decrease with the Grashof number, as the three-dimensional turbulence becomes
more effective in breaking the coherence of the interfacial vortices.

Information on the spatial and temporal distribution of the dissipation rate within a
gravity current is important not only for understanding the physics of lock-exchange
flows (e.g. what are the main flow structures responsible for most of the dissipative
losses) at different stages of the evolution of the current but also for developing
theoretical models of these flows (e.g. see Huppert & Simpson 1980), which incorporate
the effect of the dissipation, and determining the parameters in these models. As the
dissipation cannot be estimated directly in these simplified models, one possible
solution is to calibrate these parameters using the distributions of the dissipation
rate determined from numerical simulations. Moreover, the separate contributions
of the head and tail regions of the current, or the contribution of the interface
region to the total dissipation, can be calculated and modelled independently. In the
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following, we concentrate on the analysis of the higher-Grashof-number simulation
(
√

Gr = 126 000).
To study the distribution of the dissipative losses along the channel, the local

dissipation rate εr = εr (x1, x2, x3) is integrated over the spanwise and vertical
directions. This leads to a variable ε23 which is a function only of the streamwise
position along the heavier or lighter currents:

ε23 (x1) = −
L3∫ L2∫

ui

∂

∂xk

[(
1√
Gr

+ νSGS

) (
∂ui

∂xk

+
∂uk

∂xi

)]
dx3dx2. (10)

Similarly, the SGS contribution can be calculated as

ε23
t (x1) = −

L3∫ L2∫
ui

∂

∂xk

[
νSGS

(
∂ui

∂xk

+
∂uk

∂xi

)]
dx3dx2. (11)

In figure 6 the two distributions of ε23 and ε23
t are plotted at two non-dimensional

times (t/t0 = 10.61 and 21.21) which are representative of the evolution of the
heavier current over the slumping phase before and after the formation of the
stably stratified tilted layer. Consistent with the variation of the total dissipation rate
ε =

∫ L1
ε23(x1)dx1 in figure 5, the area beneath the curve defined by the variation of

ε23 with x peaks at t ∼= 10.5t0. At this moment, large dissipative losses are observed
over virtually the entire length of the heavier current.

As previously discussed, a mixing layer of nearly constant width, in which large-
scale structures are not observed, starts developing as the currents advances. For
18t0 < t < 25t0, the distance between the front and the extremity of the mixing layer
region that does not contain large-scale structures is nearly constant ( ∼= 5h). For
example at t = 21.21t0 (see figure 6) the extremity of this region is situated at x/h ∼= 5,
and the front is situated at x/h= 10. The values of ε23 are significantly smaller in
the region with x/h < 5 compared to the ones between x/h = 5 and the front. The
flow inside the current is strongly turbulent and contains large-scale structures over a
distance of 5h from the front. The dissipation rate over this region represents 73 % of
the dissipation rate occurring in the x/h > 0 region at t = 21.21t0. This percentage is
nearly constant once the current reaches the regime in which the terms in the energy
equation (7) are constant in time (t > 18t0).

The simulations showed that the presence of a highly turbulent flow behind the
front of gravity currents with R � 1 induces the formation of a stably stratified
interface layer, depleted of large scales, in the later stages of the slumping phase. At
about the same time, the rate of change of the kinetic and potential energies and
the total dissipation rate become independent of time. These flow features are not
observed for gravity currents with R � 1 at

√
Gr < 104. In the next section, we study

the evolution, structure and energy budget of gravity currents with R = O(1).

4. Gravity currents with a small volume of release (R = O(1))

A main goal of this section focusing on the evolution of currents with R = O(1)
during and past the transition to the buoyancy–inertia phase is to understand to
what degree the dynamics of full-depth lock-release flows and their energy budget are
affected by the Grashof number for 104 <

√
Gr < 106. This is an important question,

as at
√

Gr ∼= 106 the gravity current is much closer to the conditions encountered in
most geoscience applications, while most of the presently available information on
these flows come from studies conducted at much lower Grashof numbers.
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Figure 7. Concentration contours showing the structure of the gravity current at t/t0 = 4.6.

(a) Spanwise-averaged contours, case CL (R = 1.78,
√

Gr = 47 750), three-dimensional
simulation; (b) Case CL, two-dimensional simulation. Position of the bore is indicated by
an arrow. The solid and dashed lines correspond to the C =0.9 and C = 0.1 concentration
levels, respectively.

4.1. Role of the Grashof number

Among cases A (R = 0.67), B (R =1) and CL (R =1.78), the distance at which the
bore overtakes the front is the shortest for case CL (x/h = 5.5; table 2). Thus, in
the following discussion we focus on case CL to study the evolution of the current
during the transition to the buoyancy–inertia phase and its initial stages. Comparison
between cases CL (R = 1.78,

√
Gr =47 750) and CH (R = 1.78,

√
Gr =106) allows the

study of Grashof number effects on the evolution of lock-release currents for which
the flow behind the front is strongly turbulent The experiments of Hacker et al.
(1996) did not report visualizations of the current after the end of the transition to
the buoyancy–inertia phase.

Figures 7(a) and 8(a) visualize the structure of the current during the transition to
the buoyancy–inertia phase for case CL (three-dimensional results). While during the
initial stages of the transition to the inertia–buoyancy phase (e.g. see figure 7a) the
interfacial billows behind the head are strongly coherent, during the later stages of
the transition (e.g. see figure 8a), when the bore is situated at less than 0.5h from
the front, a mildly stratified tail region develops in the three-dimensional simulation,
similar to the experiment (see figure 8b). The three-dimensional simulation also
successfully captures the dimension of the region containing unmixed lock fluid
behind the front and the overall shape of the current. Simulation results also show
that starting with the initial stages of the buoyancy–inertia phase, the flow at the
front starts mixing in the three-dimensional simulation, and the front velocity decays
with time. The highest concentrations inside the current occur in a small elongated
region near the bed, some distance behind the front. The head and the stratified tail
of the current maintain their compact shape, and the coherence of the large-scale
structures present in the tail decays significantly.

Comparison of figures 7(a) and 7(b) shows that the two-dimensional simulation
captures satisfactorily the overall shape of the current and the dimensions of the
region containing unmixed fluid behind the front during the initial stages of the
transition to the buoyancy–inertia phase. Still, the coherence of the interfacial billows
is slightly larger compared to the three-dimensional simulation. In contrast, in the
later stages of the transition to the buoyancy–inertia phase the mildly stratified
tail region observed in the experiment (figure 8b) and three-dimensional simulation
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Figure 8. Concentration contours showing the structure of the gravity current at t/t0 = 12.4.

(a) Spanwise-averaged contours, case CL (R = 1.78,
√

Gr = 47 750), three-dimensional
simulation; (b) experimental results of Hacker et al. (1996) for case CL; (c) case CL,
two-dimensional simulation; (d ) spanwise-averaged contours, case CH (R = 1.78,

√
Gr = 106),

three-dimensional simulation. Position of the bore is indicated by an arrow. The solid
and dashed lines correspond to the C = 0.9 and C = 0.1 concentration levels, respectively.
Reproduced with permission from Hacker, J., Linden, P. F. & Dalziel, S. B. 1996 Mixing in
lock-release gravity currents. Dyn. Atmos. Oceans 24, 183–195.

(figure 8a) is absent in the two-dimensional simulation (figure 8c). The interfacial
vortices maintain their coherence, and the compact head region is virtually absent in
the two-dimensional simulation. Several other numerical studies (e.g. Cantero et al.
2007; Hallez & Magnaudet 2008) observed the increased coherence of the interfacial
vortices in two-dimensional simulations. The increases coherence is due to the absence
of the three-dimensional breakup mechanism. Comparison of the simulations shows
the disagreement between the three-dimensional and two-dimensional predictions
continues to grow during the buoyancy–inertia phase. Consistent with the results
of Cantero et al. (2007), two-dimensional simulations significantly underpredict the
speed of the front during the buoyancy–inertia phase.

Qualitatively, the evolution of the heavier current in case CH is similar to case
CL during the transition to the buoyancy–inertia phase (e.g. compare figure 8a to
figure 8d ). The region containing lock fluid extends closer to the front in case CH.
The front travels a slightly longer distance in the CH simulation, such that when the
bore overtakes the front the difference is close to 0.4h. The difference between the
positions of the two fronts grows at a faster rate during the buoyancy–inertia phase.
For instance, the difference is about 1h at t/t0 = 25. Thus, Grashof number effects on
the development of flow instabilities and current evolution are small over the range
4 × 104 <

√
Gr < 106.

Figure 9 visualizes the interface between the gravity current and the ambient
fluid for case CL using a concentration isosurface (C = 0.5) at t = 16t0 during
the buoyancy–inertia phase. Though the interfacial billows in the dissipative wake
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Figure 9. Visualization of the current interface at t/t0 = 16.0 using a concentration isosurface

(C = 0.5) in the three-dimensional simulation of case CL (R =1.78,
√

Gr = 47 750) with insets
showing development of the lobe and cleft structures at the front and decay of turbulence in
the tail.

region are strongly deformed in the spanwise direction, they extend over the entire
width of the computational domain. This suggests the formation of these structures
remains a predominantly two-dimensional process even for

√
Gr > 104. The spanwise

deformation of the billows starts in the formation region and is due to the lobes
and clefts at the front (see inset in figure 9). Similar to the HGR simulation
(
√

Gr = 126 000) with R � 1, interactions between the billows and the front structures
are observed. Simulation results also show that as the current transitions to the
buoyancy–inertia phase, the intensity of these interactions increases.

During the buoyancy–inertia phase the flow remains strongly turbulent behind the
head region for a distance that includes part of the tail. As one moves away from the
head region, the coherence of the large-scale coherent structures is practically lost.
For example at t =16t0 the region with x < 6h is populated with small-scale energetic
eddies that produce a relatively mildly stratified region behind the head of the current.
Eventually, these small-scale eddies, which lose their energy by mixing the lock and
ambient fluid, dissipate, and the flow starts to relaminarize.

Figure 10(a) shows the structure of the gravity current in case D (R = 1,
√

Gr = 530)
at t = 15t0 before the bore catches the front. The size of the bulk-shaped head
shrinks in time as the bore advances. Compared to the higher-Grashof-number cases
(
√

Gr > 104), very little mixing is taking place between the lock fluid and the ambient
fluid. No interfacial billows are shed behind the front because the viscosity is too
high to allow the KH instabilities to grow. The current advances over a layer of
light fluid that is much thicker (0.1h–0.13h) than that observed in the simulations for
which

√
Gr > 104. Eventually, the size of the head diminishes to the point at which

the bulk-shaped head disappears (figure 10b). This corresponds to the transition
from the slumping phase to the viscous–buoyancy phase (see the discussion of fig-
ure 14). The inset in figure 10(b) compares the predicted shape of the current with
the analytical solution derived by Huppert (1982) for the viscous–buoyancy regime.
Good agreement is observed over the downstream part of the current.
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Figure 11. Time history of the potential energy Ep (circles), kinetic energy Ek (squares)

and integral of the total dissipation Ed (diamond) in the CL (R = 1.78,
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three-dimensional simulation (filled symbols) and the CH (R = 1.78,
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three-dimensional simulation (open symbols). (a) Linear–linear scale; (b) linear–log scale.

4.2. Energy budget and dissipation rate

The variations in time of Ek , Ep and Ed for cases CL (R = 1.78,
√

Gr = 47 750)

and CH (R = 1.78,
√

Gr = 106) are shown in figure 11. These variables are non-
dimensionalized with the initial value of the total (potential) energy, Ep0. As observed
from figure 11(a) the maximum value of Ek is obtained around the time the bore
has formed (t/t0 ∼=2.5). By that time, about 59 % of the initial potential energy has
been converted into kinetic energy and the dissipative losses are very small ( ∼= 2 %)
for cases CL and CH. Results for cases A and B are similar. Most of the differences
between the energy balance in the CL and CH simulations occur between the time
the bore has formed and the time the bore catches the front. The increase in Ed is
larger in case CL, and conversely, the decay of Ek is smaller, such that when the
bore catches the front (t = 10–11t0), the difference between Ek and Ed is about 7 %
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Figure 12. Streamwise distribution of ε23(x1) (solid line) and its subgrid stress part ε23
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(dashed line) at t/t0 = 8 and 16. (a) Case CL (R = 1.78,
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Gr = 47 750), three-dimensional

simulation; (b) case CH (R = 1.78,
√

Gr = 106), three-dimensional simulation.

of the total initial energy. Meanwhile, the variation of Ep until the bore catches
the front is very similar in both simulations. The relative variations of Ep, Ek and
Ed are essentially independent of the Grashof number once the current is in the
buoyancy–inertia phase (see figure 11a for t > 11t0). The values of Ed and Ek over
the buoyancy–inertia phase in the CL simulation (figure 11a) are consistently 6–8 %
higher and, respectively, smaller compared to those observed in the CH simulation.
Grashof number effects on Ep continue to be insignificant. Past the later stages of
the transition to the buoyancy–inertia phase, after the kinetic energy starts decaying
due to the strong increase in the dissipative losses, the variations of Ep, Ek and Ed

become logarithmic (figure 11b):

Ep/Ep0 = 0.53 − 0.10 ln (t/t0),
Ek/Ep0 = 0.5 − 0.19 ln (t/t0),
Ed/Ep0 = −0.38 + 0.29 ln (t/t0).

⎫⎬
⎭ (12)

The streamwise distributions of ε23 and ε23
t in figure 12 reveal the regions in which

most of the dissipative losses occur at the different stages of the current evolution.
Between the time when the bore forms and the time when the bore overtakes the
front, the dissipation in the tail region (e.g. x/h < 2.9 at t = 8t0) is larger in case CL.
The difference in Ed between the CL and CH simulations (figure 11a) is due primarily
( > 80 %) to the larger dissipation taking place over the tail region in case CL. Over
this time interval Grashof number effects are quantitatively significant.

After the bore overtakes the front (e.g. see distributions at t/t0 = 16 in figure 12),
the variations of ε23 over the head and tail regions in the CL and CH simulations are
very similar and Grashof number effects are not significant. Though the streamwise
distributions of ε23 are very close, the contribution of the SGS component is quite
different in the two simulations. For example in the CH simulation at t = 16t0, the
SGS component accounts for more than 80 % of the total dissipation over nearly
the entire length of the current. In the CL simulation, the SGS component accounts
for less than 25 % of the total dissipation. Observe also that the total and the SGS
dissipation rates become very small close to the endwall in the two simulations (e.g.
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for 0 <x/h < 3 at t/t0 = 16). This means the flow relaminarizes in that region, which
is consistent with the results in figure 9.

Models that try to predict the propagation of internal bores generally assume that
most of the energy loss occurs in either the upper or the lower layer. Recent models
(e.g. Klemp, Rotunno & Skamarock 1997) assume the energy loss occurs in the
upper layer, as proposed by Benjamin (1968) for gravity currents, and the energy is
conserved in the lower layer. However, there is no formal proof that this hypothesis
is correct. The instantaneous distributions of the spanwise-averaged dissipation rate
after the bore has formed support this hypothesis. For low-Grashof-number currents
(case D) in which no interfacial billows are shed behind the head and the thickness
of the lower layer is clearly defined, most of the dissipation behind the bore occurs in
the upper layer. For example at t/t0 = 15 (figure 10a) results show that 68 % of the
total dissipation rate occurs inside the head, 28 % in the upper layer behind the bore
and only 4 % in the lower layer. This also appears to be the case for higher-Grashof-
number currents, though in this case it is more difficult to distinguish between the
dissipation associated with the interfacial billows and the one induced by the bore
passage.

4.3. Front velocity

The bore position and velocity are difficult to estimate directly from the concentration
contour plots because the bore propagates into the stratified layer of fluid that
corresponds to the body of the current. A more accurate way to determine the bore
position is to plot the temporal evolution of the concentration on a line situated
at a small distance (y/h= 0.1) from the bottom. The C (x, t) plots are shown in
figure 13 for case CL. A dark region in the form of a triangle is observed. The two
lines that intersect at a small angle in figure 13 correspond to the front and bore
trajectories. The slope of the lower line, which makes a smaller angle with the time
axis, corresponds to the speed of the front, while the slope of the top line corresponds
to the speed of the reflected bore. The top line cuts through an array of dark streaks.
These streaks correspond to the passage of the interfacial billows over the y/h = 0.1
line. As the speed and bore trajectories are close to straight lines, the front and bore
velocities are nearly constant until the position and time at which the intersection
takes place (xf /h= 5.5, t = 11.5t0 for case CL). The non-dimensional streamwise
length at which the bore overtakes the front l =(xf − x0)/x0 (xf is the front position)
is close to 8.8. Once the bore catches the front, the front trajectory starts curving
up, and its slope with the time axis starts decaying. Similar results were obtained
from simulations of cases A (R =0.67,

√
Gr = 30 980), CL (R = 1.78,

√
Gr =47 750),

CH (R = 1.78,
√

Gr = 106) and D (R = 1.0,
√

Gr = 530) in which the domain is long
enough, such that the bore catches the front before the current reaches the end
boundary. These results are summarized in table 2. They show that for a given value
of R, the non-dimensional location at which the bore overtakes the front is not
sensitive to the value of the Grashof number for strongly turbulent currents (e.g.
compare values for cases CL and CH).

The front velocity before the bore overtakes the front expressed as a Froude number
Frf = Uf /ub, and the values of the bore velocity Ubore/ub are 0.45 and 0.62 for case
CL. The corresponding values for case CH are 0.485 and 0.65. The results for the
other simulations are summarized in tables 2 and 3. Though the increase of the
Grashof number between cases CL and CH produced a 6–7 % increase in the front
and bore velocities, their ratio remained close to constant at 1.35. The present study
shows the ratio changes only by 2 % for 102 <

√
Gr < 106. Case CH (Ref = 248 000)
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Case Ubore/
√

g′h Uf /
√

g′h Ubore/Uf

A 0.60 0.44 1.36
B 0.61 0.45 1.35
CL 0.62 0.45 1.35
CH 0.65 0.485 1.35
D 0.49 0.37 1.33

Table 3. Comparison of bore and front velocities.
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Figure 13. Evolution of concentration with time along the x -axis for case CL
(R =1.78,

√
Gr = 47 750). Distance from the bottom wall is y/h = 0.1. The dashed line

corresponds to the front trajectory until the bore overtakes the front. The dashed–dotted line
corresponds to the bore trajectory. The arrow marks the location at which the bore overtakes
the front.

has Frf = 0.485, which is close to the theoretical value of 0.5 obtained by Benjamin
(1968) for an energy-conserving current. Keulegan (1958) found Frf = 0.48 at front
Reynolds numbers around 150 000.

Figure 14 shows the temporal evolution of the front position in log–log scale for
several cases with R = O(1). Following the initial short acceleration phase, a region in
which the slope is approximately constant and equal to one (this corresponds to xf ∼ t

or Uf =constant) is present in all the cases. The bore forms at t/t0 = 2.5. For cases CL
and CH, there is a change in the slope of the front trajectory between t =10–11.5t0
(bore overtakes the front) and t =20t0. The change in the slope corresponds to a
decay of the front velocity. For t > 20t0, the slope in the log–log plot becomes nearly
constant and equal to approximately 0.63 in case CL and to 0.65 in case CH. This
slope is equal to the exponent β in the power law decay xf ∼ tβ(Uf ∼ tβ−1 = t−α). The
values of α and β in case CH are very close to the theoretical values of 1/3 and
2/3 (Fannelop & Waldman 1972; Hoult 1972) corresponding to the buoyancy–inertia
phase. In case B (R = 1, L1/h= 9) the flow conditions are such that the current
reaches the end boundary before the end of the transition to the buoyancy–inertia
phase; so the change in the slope towards the 2/3 value is not complete. For case D,
the change in the slope takes place more abruptly. Similar to cases CL and CH, the
front trajectory reaches a constant slope after the bore overtakes the front. This slope
is equal to 1/5 (Uf ∼ t−4/5), which is the expected value for the variation of the front
position with time during the viscous–buoyancy phase (Rottman & Simpson 1983).
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Figure 14. Evolution of the non-dimensional front position l with time in log–log scale for
cases B (R = 1.0,

√
Gr =87 750), CL (R = 1.78,

√
Gr = 47 750), CH (R =1.78,

√
Gr = 106)

and D (R = 1.0,
√

Gr = 530). The inset shows an enlarged view of the l = l(t/t0) curves in the
later stages of the evolution of the gravity current.

The present results demonstrated that a change in the Grashof number between√
Gr ∼= 3 × 104 and

√
Gr = 106 did not result in significant qualitative changes in the

structure and evolution of a gravity current with R = O(1). The temporal variations
of the kinetic and potential energies were logarithmic past the later stages of the
transition to the buoyancy–inertia phase. Quantitatively, the behaviour of the gravity
current with

√
Gr = 106 was closer to that expected for inviscid currents. In the next

section, we analyse the near-wall flow structure of high-Grashof-number currents.
The focus is on gravity currents with R = O(1) and

√
Gr > 3 × 104.

5. Near-wall flow structure and bed friction velocity
Knowledge of the spatial and temporal distributions of the bed friction velocity

is necessary to estimate global quantities related to the capacity of the current to
entrain bed particles (e.g. the total amount of sediment entrained by the current and
the associated bed morphology changes), especially in numerical models in which the
entrainment is a function of the difference between the actual bed shear stress and
the critical bed shear stress value given by Shields’s diagram. Two main questions
we investigate are (i) how do the bed friction velocity distributions change with
time during and past the transition to the buoyancy–inertia phase for currents with
R = O(1), and (ii) how are these distributions, and thus the capacity of the current
to entrain sediment, affected by the Grashof number? No such information is yet
available for high-Grashof-number currents.

In all the simulations with R = O(1) and
√

Gr > 3 × 104, a region containing streaks
of high and low streamwise velocities forms during the slumping phase. Such a region
is also present in case HGR (

√
Gr = 126 000) for which R � 1. The length of this

region increases until the bore overtakes the front. Then, the length of the streaky
region remains approximately constant. After some time (e.g 25t0 for case CL) the
length of the streaky region starts decaying. At a certain point, as the fluid at the
front continues to decelerate and the height of the current to decrease, the strength
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Figure 15. Visualization of the flow structure in the near-wall region at t/t0 = 5 for case B

(R =1.0,
√

Gr = 87 750). (a) Vertical vorticity contours on the bottom wall; (b) streamwise
velocity contours showing the high and low streaks of streamwise velocity in a plane located
at about 11 wall units from the bottom wall; (c) spanwise-averaged concentration contours.
The light and dark vorticity contours in (a) correspond to ωy = 2ub/h and ωy = − 2ub/h,
respectively. The solid and dashed lines in (c) correspond to the C =0.9 and C = 0.1
concentration levels, respectively.

of the turbulence in the region behind the front decays below levels at which it can
sustain the streaks.

The streamwise velocity contours in a horizontal plane situated at about 11 wall
units from the bottom wall are plotted in figure 15, along with the vertical vorticity
contours on the bottom wall for case B (R = 1,

√
Gr = 87 750) at t/t0 = 5 after the bore

has formed. In the cases with R =O(1) the streaky structure observed in the stream-
wise velocity and vertical vorticity contours is present mainly beneath the head
and dissipative wake regions (e.g. for 0.5 <x/h < 2.8 in figure 15) after the bore
forms. Case B (R = 1) was used to illustrate this phenomenon because it has the
highest Grashof number (

√
Gr =87 750) among the well-resolved three-dimensional

simulations. The velocity streaks essentially disappear in the tail region because the
local turbulent flow is not strong enough for the streaks to form. In fact, behind
the region containing unmixed lock fluid (x < 1.6h in figure 15c), the variations
in the streamwise velocity are mostly associated with the presence of interfacial
billows. These billows induce large spanwise bands of low (x ∼= 1.7h) and high
(x ∼=0.75h) streamwise velocities. The average width of these streaks is about 0.025h

(approximately 40 wall units), and their average length decays from about 0.8h

( ∼=1200 wall units) near the front to about 0.5h ( ∼= 800 wall units) towards the end of
the streaky region. The streaks are larger in terms of wall unit dimensions compared
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to the ones observed in fully turbulent boundary layers and channel flows. This is
expected, as the flow conditions behind the front of the current at a certain front
Reynolds number are not exactly equivalent to those in a fully turbulent channel
flow at a channel Reynolds number that is equal to the front Reynolds number. One
should also mention that in the HGR simulation (

√
Gr = 126 000) with R � 1 the

average length of the streaks was close to 0.5h during the slumping phase and varied
less with the distance from the front.

One limitation of the present study is that the effect of bed particles entrained
by the compositional current on the near-bed turbulence and the bed shear stress
distribution behind the front is not considered. Still, comparison of the bed shear
stress distributions for cases CL (

√
Gr = 47 750) and CH (

√
Gr =106) allows to

understand how these distributions change as the current gets closer to the inviscid
limit and the importance of scale effects between Grashof numbers at which most
laboratory experiments are conducted and a Grashof number that is comparable to
the values encountered in practical applications (e.g. gravity currents forming at the
bottom of lakes and oceans). The non-dimensional bed friction velocity distributions
(uτ/ub, where uτ =

√
τb/ρ, with τb being the modulus of the bed shear stress) obtained

in cases CH and CL are discussed in figure 16. The number of mesh points in
the spanwise direction in the CL simulation is sufficient to accurately capture the
streamwise velocity streaks. This is not the case in the CH simulation in which
one expects the streaks to be thinner than the spanwise grid spacing used in the
simulation. The distributions of the spanwise-averaged values of uτ/ub at different
stages of the evolution of the gravity current are shown in figure 17 for both cases.
Even for case CH, in which the streaks are not well resolved, the distributions of
the spanwise-averaged values of uτ/ub are expected to be reasonably well predicted.
This is because the bed friction velocity distributions are determined to a large extent
by the large-scale eddies present in the head, dissipative wake and tail regions away
from the near-bed layer. Despite the larger velocity gradients at the bed, the values
of uτ/ub are smaller in the CH simulation. This is in part because uτ is proportional
to the square root of the molecular viscosity; so uτ scales with Gr−1/4. On the
other hand, the non-dimensional velocity gradients at the bed are larger in the CH
simulation.

Figure 16 compares the distributions of uτ at t = 8t0, when the bore is at 1.2h behind
the front. Individual streaks are clearly distinguishable in the CL simulation (fig-
ure 16b). The positions of the elongated patches of high uτ values in the front region
correlate well with that of the primary and secondary lobes forming at the front. The
length of the region containing streaks of high uτ values behind the front is 1.4h. The
only other region in which the values of uτ/ub are amplified in case CL is situated
around x/h= 1.9, slightly behind a strongly coherent interfacial billow. These values
are about 40–50 % lower than the ones induced by the current immediately behind
the front (figure 17).

In the CH simulation (figure 16a) the region of high uτ values associated with the
presence of the streaks extends over a similar distance behind the front (1.2h–1.4h).
However, the individual bed friction velocity streaks are hardly recognizable, and the
local distribution of uτ is more uniform in the region in which streaks are present.
This is expected, as the physical dimensions of the streaks are decaying with the
increase in the Grashof number, similar to constant-density turbulent channel flows
in which the length and width of the streaks expressed in wall units are expected to be
close to constant. The interfacial billows induce several bands of large uτ/ub values
over a distance of 2.7h behind the front. In contrast to case CL, the values inside the
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(a) Case CH (R = 1.78,
√

Gr = 106), xf /h =4.4; also shown are the spanwise-averaged

concentration contours; (b) case CL (R = 1.78,
√

Gr =47 750), xf /h = 4.15. The solid and
dashed lines in the concentration contour plot for case CH correspond to the C = 0.9 and
C =0.1 concentration levels, respectively.
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Figure 17. Streamwise variation of the spanwise-averaged friction velocity on the bottom
wall for case CL (R = 1.78,

√
Gr = 47 750) at t/t0 = 8 (black solid line) and t/t0 = 16 (black

dashed line) and case CH (R = 1.78,
√

Gr = 106) at t/t0 = 8 (grey solid line) and t/t0 = 16
(grey dashed line).

spanwise bands are comparable to the ones observed close to the front (see figure 17).
Also, compared to case CL some of the spanwise bands of high uτ/ub values no longer
extend over the whole width of the domain (e.g. band centred around x/h = 2.2), and
their axes are more deformed in the spanwise direction.

The distributions of the spanwise-averaged values of uτ/ub during the buoyancy–
inertia phase are shown in figure 17 at t = 16t0, when the front velocity is less than
0.5Uf . As a result of the reduction in the front Reynolds number, the turbulence
intensity is also decaying behind the front as the current propagates during the
buoyancy–inertia phase. This has a larger influence on case CL for which the front
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Reynolds number is only 5400 at t = 16t0. As shown in figure 17, in case CL the only
regions in which the values of uτ/ub are comparable to the largest levels observed
before the start of the buoyancy–inertia phase (e.g. at t =8t0) are situated just behind
the front and around x/h= 4.9. In case CH, though the levels of uτ/ub at t =16t0
have dropped over most of the length of the current compared to the levels observed
at t = 8t0, they remain comparable to the values observed at the front (uτ/ub

∼= 0.014)
over quite a large distance ( ∼= 4.5h) behind the front.

The largest spanwise-averaged values of uτ/ub in the CL and CH simulations are
close to 0.04 and 0.02, respectively. If one arbitrarily defines a threshold value for
sediment entrainment to occur at values larger than half of the maximum value, the
total length of the regions that can entrain sediment is higher in the higher-Grashof-
number simulation, and the differences increase with time, especially after the start
of the buoyancy–inertia phase (e.g. 3h in case CH compared to 2.5h in case CL at
t = 8t0 and 4.3h in case CH compared to 2.5h in case CL at t = 16t0). Moreover, while
in case CH the values of uτ/ub over the dissipative wake region and part of the tail
remain very close to the ones observed just behind the front, in case CL the values of
uτ/ub in the same regions are at least 30 % lower than the ones observed close to the
front. Thus, higher-Grashof-number gravity currents are more effective in entraining
sediment, especially during the buoyancy–inertia phase.

6. Summary and conclusions
In the first part of the paper, results of two three-dimensional LESs were used

to study the physics of compositional gravity currents with a large volume of
release (R � 1) during the slumping phase. In the higher-Grashof-number simulation
(
√

Gr = 126 000) the flow behind the front was strongly turbulent. In contrast with
the lower-Grashof-number simulation in which the interfacial billows maintained
their spanwise coherence over the whole length of the current, in the higher-Grashof-
number simulation the interfacial billows were found to lose their spanwise coherence
over less than 2.5h from the front past the initial stages of the slumping phase.
The interface region became populated with small-scale energetic eddies that broke
the interfacial two-dimensional billows into smaller structures. As a result, a stably
stratified, slightly tilted layer developed in the interface region away from the two
fronts starting around t ∼= 18t0. This layer does not contain large-scale structures. The
concentration profiles across this layer can be approximated by a hyperbolic tangent
function. Such a layer is expected to form in cases in which the flow in the region
behind the front is highly turbulent. The threshold value in terms of the minimum
Grashof number is around

√
Gr ∼=35 000.

The analysis of the terms in the transport equation for the total kinetic energy
demonstrated that in the higher-Grashof-number case with R � 1 the lock-exchange
flow reaches an equilibrium regime in which the rate of change of the kinetic and
potential energies and the total dissipation rate are essentially constant in time. The
equilibrium regime is expected to be observed in finite-volume lock-exchange flows in
which the lock length is large enough, such that the currents will reach the endwalls
well after t =18t0. Once the equilibrium regime is reached (t ∼= 18t0), the ratio of ε

to dEp/dt is close to 0.28 and that of dEp/dt to −dEk/dt is 0.72. Also, the values
of the local dissipation rate integrated over the spanwise and vertical directions (ε23)
are significantly larger over a distance of 5h behind the two fronts. Over this region,
about 73 % of the total dissipation rate takes place.
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In the second part of the paper, four three-dimensional LESs of full-depth lock-
release flows with initial aspect ratios of the lock fluid between 0.67 and 1.78 were
conducted at Grashof numbers (

√
Gr = 30 980, 87 750, 47 750 and 106) for which the

flow behind the front is strongly turbulent during the transition to and over part
of the buoyancy–inertia phase. In particular, in the simulation for which

√
Gr =106,

the gravity current is close to the inviscid state that is often assumed in theoretical
models. Comparison of the simulations conducted with

√
Gr = 47 750 and 106 showed

that the structure of the two currents and their evolution remains qualitatively
similar.

For strongly turbulent gravity currents (
√

Gr > 3 × 104) with R = O(1), the temporal
variations of the total kinetic energy and total potential energy and the integral of
the total dissipation rate were found to be logarithmic past the later stages of the
transition to the buoyancy–inertia phase (e.g. t > 7t0 for currents with R =1.78) The
streamwise distribution of the local dissipation rate integrated over x =constant
planes showed that Grashof number effects were important between the time the
bore formed and the time the bore overtook the front. During this time interval
the total dissipation rate in the tail region was found to decrease significantly with
the Grashof number.

Present results indicate that the ratio between the bore and front velocity is close
to 1.35 for a wide range of Grashof numbers. (The ratio increases only by about
2% between

√
Gr = 530 and

√
Gr = 106.) During the buoyancy–inertia phase, the

front velocity was found to vary proportional to t−α (the time t is measured from
the release), with the constant α being very close to the theoretical value of 1/3 in

the simulation for which
√

Gr = 106.
Details of the distribution of the bed friction velocity uτ were investigated at

different stages of the evolution of finite-volume lock-release gravity currents with
R =O(1). Scale effects were considered by comparing the distributions of uτ from
two simulations in which the only difference was the value of the Grashof number
(
√

Gr = 47 750 versus
√

Gr =106). In both simulations, a region containing streaks
was present behind the front. These streaks were induced by the near-wall streamwise
velocity streaks forming in the strongly turbulent region behind the front. The length
of the streaky region peaked around the time at which the bore reached the front.
It then remained approximately constant during the initial stages of the buoyancy–
inertia phase (e.g. until 25t0 for

√
Gr =47 750). Then, the length of the streaky region

started to decay due to the strong reduction in the front velocity and height of the
current. The dimensions of the streaks decayed with the increase in the Grashof
number. This decay produced a more uniform distribution of uτ behind the front.
The overall size of the regions characterized by non-dimensional values of uτ/ub

larger than half of the maximum value recorded at a certain time was found to
increase with the Grashof number. The increase was especially noticeable during
the buoyancy–inertia phase. This means that higher-Grashof-number currents will be
more effective in entraining sediment from the bed.

In most cases gravity currents propagate over surfaces containing bed forms and
topographic bumps that can significantly modify the front velocity, the spatial and
temporal distributions of the bed friction velocity and thus the entrainment capacity of
the gravity current. Highly resolved numerical LESs of gravity currents propagating
over large-scale roughness elements (e.g. arrays of two-dimensional dunes or ribs)
can help in clarifying to what extent the findings obtained from experimental
and numerical studies of gravity currents propagating over smooth beds can be
extrapolated to the case more relevant for practical applications in which the bed is
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rough. The impact between a gravity current and a submarine structure (e.g. oil and
gas pipes, submerged dams) that can result in a hazard situation is another example
of applications in which LESs are well suited to provide the data (e.g. temporal
evolution of the forces on the structure) needed to estimate the hazard risk. The
present model is being extended to tackle these problems of significant relevance to
river, coastal and ocean engineering.
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